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This article investigates the implications of assumed powerlaw relationships among
size, duration, and effort on the probability that a given software profect will be
completed within its estimated schedule and manpower resources. Specifically, software
development tasks are treated as sample points in a probability space characterized by
three random variables: size, duration, and resource expenditure. The completion confi-
dence factor is then computed. The most astonishing conclusion is the low confidence
factor of the average project, significantly less than 25%. This low confidence factor is the
result of correlation of the project duration and work effort by a tradeoff relationship

referred to as “Putnam’s software equation.”

l. Introduction

The early-on estimation of the resources and schedule
required for the development and maintenance of software has
resulted in several resource and schedule models that accept
such inputs as the enormity of the task, the physical, environ-
mental, human, and management constraints assumed or
known to be in effect, the history base of similar and dissimi-
lar experience, and the means, alternatives, and technology
available to the task. Such models attempt to predict the
performance of humans doing the work, the events and expen-
ditures in the development process, and the characteristics of
the resulting product. The goal of such models has been
primarily to predict the average characteristics of an
envisioned project in such a way as to suffice for planning
purposes.

The prediction of human task group behavior, however,
may be viewed as a problem in estimating events in a stochas-
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tic process governed by an unknown, and probably nonstation-
ary, probability function. An optimum model can predict only
to the limit imposed by the statistical characterization of the
human activity.

In addition to the mean behavior of software projects, the
statistical treatment can also lead to estimators for project
parameters that permit the evaluation of certain risk factors.

The optimal cost prediction model, however, would require
the precise quantification of all technical, environmental, and
human-behavior parameters, and would combine these into a
mathematical formula producing maximal likelihood or mini-
mal variance results. Lacking this precise quantification, the
best that one may hope for in a cost model is that it accom-
modate the principal factors affecting the estimate variance (or
project risk).




There are a number of software cost models in existence,
fourteen of which are summarized in Ref. 1. Most of these are
least-square-error fits using power-law relationships among
size, resource, and schedule parameters.

An IBM study (Ref. 2) reported the analysis of 60 software
projecté with respect to 68 situational variables believed to
influence productivity. Of these, 29 showed a significant, high
correlation with productivity, and were included in their esti-
mation model. This model utilized power-law relationships for
both the effects of the situational variables as well as the size,
resource, and schedule variables.

Nine such models were evaluated for Air Force use as
reported in Ref. 3. Model accuracy was measured and found to
be best whenever a particular model was calibrated using repre-
sentative historical data. Calibration was found to have greater
effect on estimating accuracy than the precise model form.
Conclusions based on statistics from the University of Mary-
land (Ref. 4) tended to confirm this hypothesis on power-law
models.

All of the models above tended to focus on fitting mea-
sured statistics to relationships among pairs of parameters:
effort vs size, duration vs size, effort vs duration, and average
staff vs effort. Another model, the Rayleigh-Norden-Putnam
model (Refs, 5 and 6), presupposes a power-law model among
size, effort, and duration, a model calibrated using available
industry data; however, the trivariate data for this calibration
has not been published to the author’s knowledge.

This article investigates the implications of assumed power-
law relationships among size, duration, and effort on the
probability that a given software project will be completed
within its estimated schedule and manpower resources. Specifi-
cally, the paper treats software development tasks as sample
points in a probability space characterized by three random
variables: size, measured in delivered lines of source code,
duration, measured in months, and resource expenditure, mea-
sured in man-months. Powerlaw equations are used to
describe the relationships between expected values of the
software random variables, and log-normal probability func-
tions are used to approximate marginal and conditional
distributions.

The paper then computes the completion confidence fac-
tor, defined as ’ :

(T, W) =Pt<T,w<W}

i.e., the probability that the project duration, ¢, and work
effort, w, will not simultaneously exceed values W and T,
respectively.

ll. Software Project Parameter Relationships

We shall suppose, for the purposes of this article, that a
software development can be characterized by its final deliv-
ered size, the total effort expended, and the overall length of
time required. We shall denote these quantities as

the number of kiloLines of delivered source code

w the work effort required in man-months

t the time duration in months

However, we shall find it more convenient to work with the
logarithms of these:

log (L)
log (w)
log (2)

In this way, power-law relationships among L, w, and ¢
become linear relationships in their logarithms.

For a given program to be written, an infinite ensemble of
projects would not all produce the same values of ¢, w, and L.
Rather, one would observe a statistical distribution over the
three-dimensional space spanned by these parameters. We shail
thus treat software development characteristics as a probabil-
ity space characterized by random variables log (L), log (w),
and log (¢), governed by a probability density function,

p(log (2), log (w), log (L))
In terms of the usual expected-value operation, £{-}, the point
(79> Ws Ag) = (E{log (1)}, E{log (w)}, E{log (L)})

represents the characteristics of the average project across the
hypothetical ensemble of projects writing the particular hypo-
thetical program.

A. Effort-Duration Tradeoff Characteristics

The average-project point (74, w,, Ay) may be assumed to
conform to a tradeoff law of the form

Ty = 8o Ny)

That is, the average time required is influenced by the average
effort applied and the average size of the task.
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Let us therefore define zero-mean random variables:

T = log(t) - 7,
w = log (W)~ Wy
A= log(L) -\,

having standard deviations o, o, and o,, respectively, and

probability density function p(r, w, X). We seek to approxi-
mate the probability (confidence) that a project will be com-
pleted within schedule and manpower resources,

C(T, W) = Pt<T,wsW}

=Pr<X,w<Y}

X Y +00

= f f f p(r, w, ) d\dwdr
X Y

= f f p(r, wydwdr

X =log(7) -7,

where

Y = log(W)- wg

The values X and Y are logarithmic schedule and effort mar-
gins measured from the average-project point. X and Y are
related via the tradeoff law as follows:

X = log (7) - g(log (W) - ¥,1,)

It is clear that C(Z7, W) depends on the average-project
point, i.e., on the way expected effort has been traded with
expected duration for a certain expected size. We shall
optimize this situation by choosing the tradeoff to maximize
the confidence,

C,(T,W) = max
7'0:3' (‘")0’ 7\0)

(T, w)

The condition for maximization of confidence is

dC(T, W) _

dwo 0
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which yields

Y X
% p(X, w)dw+f p(r,Y)dr = 0

—00 —_

Note that X may be eliminated from this equation by using
the relationship imposed by the tradeoff law above, Thence
the equation can be solved for Y, and then X and (7, wg)
found. These margin values will be denoted X, and Y,
respectively. ‘

Note also that the solution above is the same as if C(T, W)
were maximized with respect to Y, subject to the constraint
imposed by the tradeoff law.

B. Putnam’s Software Equation

Putnam (Ref. 6) has postulated a tradeoff between size,
effort, and duration, and has given it the form

L

P ¢+4q
Wt

or

log (L) = n+plog(w)+qlog(z)

or, if we presume that the tradeoff is to be valid in a neighbor-
hood of the average-project point,

A= pwtygr
with
Ao = n¥pwytaT,
The functiong( ) of the previous section is thus linear:
7o = 8(wy, A) = - nfg + Ny /q - pwlq
and X and Y are related by
qX+pY = ntplog(W)+qlog(T)-), = A
The parameter A defined by this equation may be viewed as a
size margin, because = n + p log (W) +qlog (T) is the virtual
expected size when duration T"and effort W are expended, and
A, is the expected size of the project. Note: it is not necessary
that the tradeoff equation apply at (T, W). & is merely the

constant defined by T and W in the tradeoff rule above,

Putnam calls the tradeoff law the “software equation,” and
specifically postulates the values




i}

p = 1/3

q = 4/3

for a tradeoff exponent ratio value of r = q/p = 4. These values
were obtained by Putnam after a study of several large soft-
ware implementation projects.

The author has been unable so far to locate collaborative
published statistics in the open literature supporting the » =4
figure. However, in private communications, the author has
been informed by individuals having access to software pro-
ductivity data bases that this particular statistic would not be
difficult to compute, when undertaken.

The particular value » = 4 implies that a factor of 16 times
as much manpower is required to shorten a schedule by a
factor of 2. However, it well may be that » depends on project
size. A value » = 4 may adequately describe localized changes
in project parameters by a few percent about the average-
project point for very large undertakings, but it may not apply
to small-to-medium-sized efforts, where one may truly halve
the overall duration by application of increased resources. For
medium-scale efforts, it has been suggested that perhaps only
an increase of 1.5 times the man-months effort is needed when
the duration is halved, or r= log, (1.5)= 0.484. We shall
discuss the influence of the value # on the confidence factor at
greater length later in this article.

We shall therefore keep the values of the software equation
coefficients undetermined for the present in order to be a bit
more general in our approach, and later we shall solve for
these, to the extent possible, using published empirical data.

C. Derivation of the Software Equation

If one were given a set of point-data {(r, w, A)} taken from
an ensemble of projects of various durations, efforts, and sizes,
then one could perform a least-squared-error fit to the data to
determine general relationships among the random variables.
Specifically, for the duration variable 7 the best-fit curve
would be (Ref. 7):

Ton = E{r|w, \}

w

We shall assume, in keeping with the Putnam model, that
this relationship is approximately a linear one

-
It

wa = (A pw)lg

or

>
i

pwtqr,,

for appropriately chosen p and q. We have purposely chosen
these coefficients to correspond to those appearing in the
Putnam equation for later discussion.

The orthogonality principle in probability theory (Ref. 7)
states that the error between 7 and 7, , is uncorrelated with
both w and A. This provides two equations

E{w\} = pofd + gF {cor)}
o2 = pE{w\} +qE{\r}

In a similar fashion, one may seek to find relationships
among each pair of random variables by finding the least-
squared-error functions

w, = E{w|A}
T, = E{rI\}
Ty = E{r|w}

Here there is strong evidence (Refs. 2, 4, and 8) that a linear
approximation to each of these functions is valid, say

wy = E{w|A} = aA
T, = E{r[A} = BA
T = E{rlw} = yw

Figures 1, 2, and 3 show scatter diagrams in support of these
hypotheses.

Application of the orthogonality principle to these expecta-
tions produces the relationships

E{wA}= aoi
E{\r} = 60§
E{wr}= 'yaiJ

which may be substituted into the two equations found earlier
to obtain

aptfg =1

252 (52
ap tayq = a*oy/o,

provided that neither o, nor o, is zero.
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Normally, one could solve these two simultaneous equa-
tions for p and ¢ directly, whereupon a comparison with the
Putnam values would be immediate, in terms of published
best-fit parameters. However, we expect that § is approxi-
mately equal to ay, for the following reason: Note that « is
the best-fit coefficient relating X\ to w, and 7y is the best-fit
coefficient relating w to 7. Hence their product should be the
coefficient relating A to 7, and @ is the actual best-fit coeffi-
cient relating A to 7. If equality were the case, the two
equations above would be singular, so no unique solution for p
and ¢ would then result.

But it is not the case that § = ay. If it were, the righthand
sides of the two equations would have to be equal, a condition
that would require

2 2

= 2 = o2 4 o2 2
Y o, Joy = a*+ owp\/a}\

(we derive this latter relationship later), leading to a contradic-
tion.

It is the case, however, that § is near enough to «y that
small errors are greatly magnified in the solutions for p and g.
For this reason, it will be necessary to find p and g by other
means, such as an actual two-parameter linear least-squares-fit
of the raw data.

We can nevertheless express the values of p and g in terms
of r=q/p,

-1
P atyr
__F
4 oty

In summary, we have assumed thus far only the following:
(1) that the function E{r|w, A}, which minimizes the least-
squared-error, is linear in both w and 7, and (2) that each of
the best-fit functions E{w|A}, E{r{A}, and E{7|w} are also
linear in their variables. These assumptions are all certainly
approximately true, as supported by published analyses.

D. Program Size Statistics

For a given program to be written, one may estimate the
mean and variance in size of the program by a number of
techniques. Let us suppose that the method chosen produces
representative estimates, and let us approximate the distribu-
tion of actual lines of code finally produced by a normal
probability function,

p(N) = Z(Mo,)
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where (Ref. 9)
Z(x) = (2m)y %5 exp (-x%/2)

Program size statistics are often postulated to fit the beta
distribution rather than the normal, so as to avoid the theoreti-
cal occurrence of extremely large values of A, which are
permitted in the normal model (with low probabilities), but
are absent in actuality. We shall discuss the implications of this
later in the section on accuracy considerations.

E. Joint Effort-Duration Statistics

Let us now compute the function p(r, w), which will
permit us to evaluate the confidence integral for a particular
project ensemble.

We shall assume that, if w and A are given, the density of
the remaining random variable, 7, can be approximated by a
normal density, in which the conditional mean in 7 is deter-
mined by the software equation. Similarly, given A, the density
of w can be estimated by the normal density, with its condi-
tional mean as that value determined earlier. That is, we
assume

p(rlw, N = Z((r- 7, Moy, )

p(w[N) = Z(w- w)lo, )

where Orjon 18 the standard deviation of 7 given both w and
A, and o, ) is the deviation of c given A. Scatter diagrams of
w vs A published in the literature, such as that shown in Fig. 1,
indicate that the p(cw|\) approximation is reasonable. Further,
such studies provide measured values for o)

The sought-for joint density is then

1t

o(r, ) f p(rleo, N p(@IN) (V) AN

6 Z(r/o ) Z(8(w/o,, - pr/0,))

This is a joint normal density in which the standard deviations
0, and g, correlation coefficient p, and parameter § are given

by

2 2 2
o5 (5t 03)

U’? = U?Iw A
’ r202
w
2 = 2 22
Gw leh to OA




= g2
p le}x/ra'row

©
[

(1 _ p2)'—0.5

{(the equation above for oz) is that referred to earlier, which

yielded the contradiction in the equality 8 = ay).

Even though o, \ has not been estimated in the litera-
ture, the value of o, can be evaluated, as will be shown later,
to be

2 - 2 2 2
a'r o'rl}\+ﬁ 07\

All parameters needed to evaluate the joint density are there-
fore available from published data,

Note, however, that since |p | < 1 and since r is unaffected
by the value of o,, the value of r is constrained by the lower
bound

Owin

F = p
TIA

This relationship constrains p and g as follows:

OTIJ\

p<——T2
a0 Y00

Oin
aorl?\ + 70w|}\

q=
F. Effort Statistics
Integrating the joint density over 7 yields the approximate
marginal density of w,
p(w) = Z(w/o,,)

in which o, is given above.

G. Duration Statistics

Integration of the joint density above with respect to w
yields a normal approximation for p(t) whose variance has a
term °3| w, - However, the variance may be computed another
way: the published statistics of 7 vs X indicate that a normal
approximation is appropriate:

p(riN) = Z((r- 1\)/0_,)

where g, is the standard deviation in 7, given A, obtained
from the published data. Averaging over A produces the nor-
mal marginal density for 7,

p(®) = Z(rlo,)
in which the variance of 7 is, as stated earlier,

2 - 2 2 .2
a'r 07‘I>\+ﬁ 0?\

Thus, the deviation in duration can be calculated directly from
the measured and estimated deviations in w and A, respec-

tively. Hence, the need to compute a,fl w, Is removed.

H. Computation of Confidence Factor

Integration of the joint normal density p(7, w) to produce
C(T, W) as indicated earlier yields a known (but untabulated)
function (Ref. 9)

c(T,w) = L(—X/OT,—Y/ow,p)

where L(x,y, p) is defined as the double integral

L(x,p,p) =fwfm62(u)2(6(v- pu)) du dv
x Yy

Values for L(x, y, p) may be found by numerical integration.

One particular case of interest can be evaluated directly,
however, namely the confidence factor for the average project,
C(Ty, Wy). This results when X = ¥ = 0, giving

C(To: WO) = L(O: 0; p)

1 . arc sin o
4 2

Note that since p is a negative quantity, the confidence in
average project success is less than 25%. To raise the confi-
dence factor to reasonable levels, it is therefore necessary to
increase the schedule and effort margins, i.e., X and Y, to
positive values,

Evaluation of the previous conditions for finding X, and
Y, produces the equation

Z(aXO)P(b - cXO) =hZ(d- eXO)P(f+gX0)

where P(x) = (1 + erf (¢/2°%))/2, in which erf (:) is the
well-known error function (Ref.9), and the coefficients a
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through & are given by
a = l/UT
b =dé

¢ = 8(r/ow +p/aT)

d= A/pow

e =rfo,
f=-bp

g =cpt 1/5OT
h =eo

T

The solution X, to this equation may be found numerically
using Newton’s method, and then the corresponding ¥, com-
puted.

The confidence factor is then computed by evaluating

Co(T, W) = L(-X,[0,,~Y [0, p)

It is interesting to note in the optimization equation when
A=0 that X;= Y;=0 is not a solution. Instead, one can
show that X, <0 and ¥, >0 for this situvation. This means
that the confidence will be somewhat greater for a project
expected to last somewhat longer than log (T) with somewhat
less manpower than log (W) than it will be for a project with
expected duration equal to log (T) and expected manpower
equal to log (W)!

ill. Evaluation

In this section we shall compute the confidence characteris-
tics of projects taken from two sources of published data.
These two sources were not chosen because of their similarities
or differences, or because the data was particularly extensive
or internally consistent, Rather, the sources were used because
they contained enough information to compute the model
parameters of interest.

A. Walston-Felix Data

Data published by Walston and Felix (Ref. 2) provide the
following parameter values of interest:

a = 091 O = 0.92

—
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0.36

=
[

O = 0.542
= 0.35
v ) = 0419
7lw
B-ay = 0.0415

Even though (Ref. 2) contains a means for approximately
normalizing the effects of the 29 noted situational and envi-
ronmental variables, the values above do not reflect this (par-
tial) normalization.

We shall assume, purely for illustrative purposes, that a
PERT (Ref. 10) estimation scheme is used to estimate A and
its variance, and that A, = log (1.52y) and A, = log
(A/2), so that we have

o, = (A

\ /6 = 0.183

max Amin)
We then obtain from the formulas above

0.935

(=]
It

0.546

(=}
1t

The bounds on r, p, and g are
r=1.7
p <0.665
g=1.13

A range of confidence factor calculations for the average-
project point is shown in Table 1.

The Putnam value p = 1/3 would require = 5.97, according
to the formulas above, rather than the » = 4 value used by
Putnam. The r =4 value, on the other hand, together with the
measured values above, produces p = 0.433. If g = 4/3 were
the case, then  would have to be 2.28,

The average-project confidence factors for these cases are
shown in Fig. 4 as a function of #. The optimized confidence
factor characteristics are plotted in Fig, 5 as a function of the
size margin parameter A. The optimum duration and effort
margins are given in Fig. 6.

B. Freburger-Basili Data
Data published by Freburger and Basili (Ref. 4) give

a = 0.986 0 = 0.378

wlA




g = 0.203 T = 0.315
v = 0.210 Y] = 0.300
Thw
v = 0.210
g- ay = -0.0004

The data from which these parameters were derived were
taken from a more carefully controlled environment and situa-
tion than the Walston-Felix data was. Computations using
these values result in

0.419

Q
]

g
e

0.317

The bounds on 7, p, and ¢ are
r=>1.202
p < 0.807
q=0971

The values of the correlation coefficient and average-project
confidence factor deriving from these values are shown in
Table 2.

A value of » = 4 implies p = 0.547, rather than the Putnam
1/3, and the p = 1/3 value implies 7 = 9.59. A g-value of 4/3
requires = 1.82.

The average-project confidence factors above are plotted in
Fig. 4 vs r for comparison with the Walston-Felix data. The
optimized confidence factor behavior as a function of the size
margin is shown in Fig. 7, and the optimum duration and
effort margins are given in Fig. 8.

C. Comparison of Results

The Freburger-Basili data generally show a higher confi-
dence factor than do the Walston-Felix data, both for the
average project and the optimized project. The difference may
be due to the extreme care and consistency taken in recording
the data in the former case. The latter data were taken from a
diverse set of projects in a wide variation of environments and
situational factors, whereas the former were taken under very
controlled and recorded conditions. If both sets of data were
normalized to remove situational effects, as described in the
Walston-Felix paper, then perhaps the agreement would be
closer.

Nothing can be learned about the value of 7 from either of
these data sets, as published. The variation of X, and Y|, for
the two cases is radically different.

IV. Accuracy Considerations

Accuracy in the figures produced by the model above
depends not only on the assumptions about normality of the
logarithms and linearity of the conditional expectations, but
also on the accuracy of the inferences from statistical measures
to the model parameter values, By assuming an effort-duration
tradeoff law, we have admitted that the average project facing
a given situation can be influenced by the expected atlocation
of effort and duration. Yet the published statistics derive from
an ensemble of projects tasked with an ensemble of very
different situations. The marked differences between the
Walston-Felix data and the Freburger-Basili data are strong
indicators that situational factors, such as technology, organi-
zation, experience, and environment, do influence project per-
formance. Walston and Felix confirm this hypothesis in their
article, where they find significant correlation between per-
formance and 29 situational variab}és.

Therefore, the published statistics represent an averaging
over the model we have presented here with respect to the
ensemble of industry projects. We may thus expect that the
use of measured variances taken from such data will exceed
the variances assumed in the model above. In this respect, use
of the Walston-Felix or Freburger-Basili numbers may produce
somewhat pessimistic results, unless the situational factors can
be normalized to some extent by an appropriate method.

Frequently, the statistics of a given bounded data set are
presumed to be characterized by a beta density,

p(x) = A(x-x)(x,~x)
over the range X, < x <x,, with p(x) = 0 elsewhere. 4 is a
constant chosen to make the density have unit area. Typically,
values b= ¢=2 are used in the so-called PERT (Ref. 10)
estimation technique.
This density has peak value X, given by
_ bx, +ex,

Yo T g

where d = b + ¢. The mean and variance of the distribution are

) X, +dx0 tx,
Kk d+2
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(d+be+ 1)(x, - x,)?
d+2)2(@d+3)

g =

The values of b and ¢ for a given d may be adjusted to
accommodate nonsymmetry in the distribution.

Let us now consider how well the normal probability
density approximates the beta density. Let us compare both as
zero-mean, unit-variance densities with respect to two mea-
sures: first, the root-sum-square error, and second, the proba-
bility that the normal variate exceeds the beta-distribution
cutoff point. The conditions for the beta density having zero
mean and unit variance are

d+3 1%
x, = —(b+1)[m]
_ (et
Y2 T TBF D"

The first comparison function, the root-sum-error, is

+ oo 0.5
‘, = [ [ ow- Z(x»zdx}

which can be found by numerical integration. The second
comparison function can be evaluated directly,

€, = [1=PCx )1+ [1-P(x,)]

= 0.5 [erfc (-x,/2%%) +erfe (x,/2°%)]

where erfc (+) is the complementary error function (Ref. 9).

The values of both €, and e, are shown in Table 3 below.
From these one may note that both errors decrease with d,
and for a given d, both are least when & and ¢ are equal (i.e.,
when the density is symmetric, as is Z(x)). We may therefore
conclude that for a reasonable d (e.g., d=4 in the PERT
technique), the error introduced into the model by assuming a
normal distribution, rather than a beta distribution, is negligi-
ble with respect to the much larger uncertainties involved with
estimating the parameters required by the model.

V. Summary and Conclusions

There is something unsettling, or at least disappointing, in
the results of these analyses, that the average project will
probably fail in meeting one of its performance goals. How-
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ever, this likelihood is implied by the combined assumptions
of the popular software cost estimators assembled into the
model of this article. All of these assumptions individually
sound reasonable, fit together in a consistent, logical way, and
are backed up by measurements of one sort or another.

Moreover, the model predicts that a significant contingency
bias in planned manpower and schedule will be required to
reach acceptable engineering risk levels.

What may be even more unsettling is that this theory may
apply to oiher kinds of projects as well, where there is a
log-linear, manpower-schedule tradeoff possible. A study of
productivity and schedule statistics in this area might be very
revealing,

However, for the moment, we may consider that part of
what has been called “the software crisis,” i.e., that most
projects seem to fail one way or another, may not be the fault
of either the programmer or his management; for even if they
were able to estimate exactly what the average project would
do in their given situation, the odds are that they would still
fail, if they planned for the average.

What this paper shows, nevertheiess, is that planning for an
average project contributes to the crisis. To succeed within
performance goals, it is necessary to do the following things:

(1) Estimate carefully the size, and bounds on size, of the
task.

(2) Negotiate manpower and schedule constraints.

(3) Determine the risks associated with failure of the pro-
ject in both manpower and schedule dimensions.

(4) Negotiate an appropriate confidence factor under
which the risks are acceptable.

(5) Determine (7, W) that wiil produce the desired confi-
dence within manpower and schedule constraints using
the model above,

(6) Schedule the task to utilize manpower W and duration
T.

(7) If a (T, W) cannot be found that is compatible with risk
and constraints on manpower and schedule, renego-
tiate.

As mentioned earlier, the model will probably produce
somewhat pessimistic results if published industry parameter
values are used. Accuracy in estimating confidence factors and
planned performance margins can come only through precali-
bration of the model parameters in the particular software
development environment and normalization of the situational




factors that may influence that particular project in the given
environment. The Thibodeau study (Ref. 3) also confirmed
that such calibration is needed for more basic modeling accu-
racy considerations.

To promote better accuracy, it is necessary to develop a
basic software cost model, such as that reported in Ref. 2 and
extended by the author in Ref. 11, that will tend to normalize

the environmental and situational factors a particular project
faces, to maintain an historical archive of measured project
characteristics, and to analyze the collected data with respect
to the model to extract the needed model parameters.

In particular, the value of r needs to be explicitly measured.
The analyses of this paper are inconsistent with the Putnam p,

q,and q/p.
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‘ Table 1. Average project confidence factors as a function of the
tradeoff ratio r, from Walston-Felix data

r r q o C(Ty, W)
2.00 0.621 1.24 -0.829 0.094
2.28 0.586 1.33 ~-0.729 0.120
4.00 0.433 1.73 -0.415 0.182
5.97 0.333 1.99 -0.277 0.205

Table 2. Average project confidence factors as a function ot the
tradeoff ratio r, from Freburger-Basili data

¥ p q p c (Tos wo)
1.83 0.730 1.33 -0.590 0.150
2.00 0.711 1.42 -0.539 0.159
4.00 0.547 2.19 -0.269 0.207
9.59 0.333 3.20 -0.112 0.232

Table 3. Beta density vs normal density goodness of fit

b ¢ d € €y
1 1 2 0.088 0.025
1 2 3 0.091 0.024
1 3 4 0.107 0.031
1 4 5 0.122 0.037
2 1 3 0.091 0.024
| 2 2 4 0.057 0.008
i 2 3 5 0.058 0.008
: 2 4 6 0.067 0.010
3 1 4 0.107 0.031
3 2 ) 0.058 0.008
‘\ 3 3 6 0.043 0.003
3 4 7 0.043 0.003
4 1 § 0.122 0.036
| 4 2 6 0.067 0.010
4 3 7 0.043 0.003
4 4 8 0.033 0.001
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